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Abstract. The coarsening process in a class of driven systems is studied. These systems have previously
been shown to exhibit phase separation and slow coarsening in one dimension. We consider generalizations
of this class of models to higher dimensions. In particular we study a system of three types of particles that
diffuse under local conserving dynamics in two dimensions. Arguments and numerical studies are presented
indicating that the coarsening process in any number of dimensions is logarithmically slow in time. A key
feature of this behavior is that the interfaces separating the various growing domains are macroscopically
smooth (well approximated by a Fermi function). This implies that the coarsening mechanism in one
dimension is readily extendible to higher dimensions.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 05.70.Ln
Nonequilibrium and irreversible thermodynamics – 05.70.Np Interface and surface thermodynamics

1 Introduction

The study of phase separation and coarsening processes
has been a subject of broad and growing interest in recent
years [1]. Following a quench into an ordered phase from
a disordered one the typical linear size of domains of the
ordered phase, `(t), grows in time. Usually, at late times
the system enters a scaling regime characterized by a sin-
gle length scale `(t) that grows as `(t) ∼ tn. The value
of the exponent n depends on the symmetry of the order
parameter and on the conservation laws of the system. In
two dimensions and above it has been argued that for a
scalar order parameter n is either 1/3 [2,3] or n = 1/2 [4,
5] depending on whether or not the dynamics conserves
the order parameter, respectively.

In one dimension and for short-range interactions the
situation is different due to the absence of long-range order
at any temperature T > 0. An exact solution of the non-
conserving Glauber dynamics at zero temperature gives
the expected scaling `(t) ∼ t1/2 [6–8]. On the other hand,
at zero temperature under Kawasaki dynamics where the
order parameter is conserved, the system gets trapped in
metastable states with isolated domain walls and coarsen-
ing is arrested. Studies of such conserving one-dimensional
models in a small T limit have shown that the growth law
`(t) ∼ t1/3 still persists [9,10]. However, for both conserv-
ing and non-conserving dynamics a solution of the deter-
ministic continuum Ginzburg-Landau equations gives rise
to a different answer. In these cases the domain walls in-
teract with each other at large distance through exponen-
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tially small forces which in the absence of diffusion leads
to the growth law `(t) ∼ log(t) [11].

Another situation where a logarithmic growth law
arises is when energy barriers proportional to the domain
size have to be surmounted during the coarsening. A spe-
cific example of this is a three-dimensional Ising model
with next nearest neighbor interactions [12]. However, in
this model the slow coarsening is lost in two dimensions.

Coarsening processes in driven systems are less well
understood. Here the dynamics does not obey detailed
balance. This gives rise to many phenomena which do not
occur in thermal equilibrium [13,14]. For example, several
one-dimensional driven systems have been shown to ex-
hibit long-range order and spontaneous symmetry break-
ing even when the dynamics is local [15,16]. A study of the
coarsening process in a one-dimensional Ising model with
conserved order parameter has shown that for a small driv-
ing field the average domain size grows as t1/2 in contrast
to the t1/3 behavior of the non-driven case [17,18]. How-
ever, in the coarsening of the two-dimensional conserved
driven Ising model there is some evidence to suggest that
after defining a properly rescaled isotropic domain size the
growth law `(t) ∼ t1/3 is retained [19].

Recently, several one-dimensional driven systems have
been shown to exhibit coarsening and phase separation of
a novel kind [20–26]. The phase separation does not rely on
microscopic rates tending to zero (as is the case for equi-
librium systems in the limit of zero temperature). Instead
the phase separation is achieved through a drive which sta-
bilizes certain domain walls and allows ordered domains
to be stable if the number of species of domains is greater
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than two. The mechanism (to be reviewed below) leads to
a slow coarsening process in which `(t) ∼ log(t) [21].

In this paper we consider the coarsening dynamics of
an extension of one of these models to two and higher di-
mensions. We show that the slow, logarithmic, coarsening
is retained. In the ordered phase the various states are
separated by domain walls, which in one dimension are
point-like objects. On the other hand in higher dimen-
sions these interfaces are fluctuating extended surfaces.
The evolution of the coarsening domains may depend on
the roughness of these surfaces. It would thus be of in-
terest to explore this issue in some detail. An analysis of
the model introduced in this paper shows that the width
of the interfaces is finite even for infinitely large systems.
Such interfaces are traditionally referred to as smooth. In
fact, it is found that the interface profiles are described
by a Fermi function with a linear potential (see Eq. (6)).
This is expected to be a generic feature for the class of
models under consideration.

The one-dimensional version of the model we study is
defined on a ring of length L where each site is occupied
by one of the three types of particles A, B or C [20]. The
model evolves under a random sequential update proce-
dure which is defined as follows: at each time step two
neighboring sites are chosen randomly, and the particles
at these sites are exchanged according to the rates

BC ←−1
−→q CB

AB ←−1
−→q BA

CA ←−1
−→q AC.

(1)

The model conserves the number of particles NA, NB and
NC of the three species. When q = 1 the particles undergo
symmetric diffusion and the system is disordered. For com-
pleteness we now review the explanation of why the sys-
tem coarsens logarithmically in time for any q 6= 1 [21].
This argument will provide a starting point for the anal-
ysis in higher dimensions. To be explicit we consider the
case q < 1. Due to the bias, an A particle prefers to move
to the left inside a B domain and to the right inside a
C domain. Similarly the motion of the B and C particles
in foreign domains is biased. Consider the evolution of
the system starting from a random initial condition. The
configuration is composed of a random sequence of A, B
and C particles. Due to the bias a local configuration in
which an A domain is located to the right of a B domain is
unstable, and the two domains will exchange places on a
relatively short time scale linear in the domain size. Sim-
ilarly, AC and CB domain walls are unstable. In contrast
domain walls of the type AB, BC and CA are long lived.
Thus, after a short time the system will rearrange into a
state of the type . . .AABBBCCAAABBCCC . . . in which
only stable domain walls are present. The evolution of this
state will proceed by slow diffusion against a bias in which,
for example, an A particle crosses an adjacent C domain.
The time scale for such a process to occur is q−` where ` is
the typical domain size in the system. This suggests that
the average domain size in the system grows as ln t/| ln q|.

Eventually the system will phase separate into three do-
mains of the three species of the form A . . .AB . . .BC . . .C
with small density fluctuations around the domain walls,
leaving the bulk of the domains pure. In another model
in the class this has been referred to as strong phase sep-
aration [23]. In the thermodynamic limit these domains
do not remix, implying breaking of translational invari-
ance. For the specific case where the number of particles of
each species is equal it was shown that the local dynamics
obeys detailed balance with respect to a long-range Hamil-
tonian. Indeed, using this Hamiltonian it was rigorously
proved that the model is completely phase separated into
pure domains in the steady state [20,21].

The model we study is the simplest generalization of
the above one-dimensional model to higher dimensionality.
To be explicit, we consider the model in d = 2 dimensions
but the results presented in this paper are also valid in
higher dimensions. We introduce a second lattice direction
in which the particles perform unbiased diffusion. That
is we study an Lx × Ly lattice, with periodic boundary
conditions, in which at each time step two neighboring
sites are chosen at random. If the two sites lie along the
x axis the particles perform a biased diffusion defined by
equation (1) while if they lie in the y axis the particles
perform an unbiased diffusion. Thus, along the y axis the
dynamics is defined through the rates

BC ←−1
−→1 CB

AB ←−1
−→1 BA

CA ←−1
−→1 AC.

(2)

Here for simplicity the transition rates are taken to be 1,
although choosing a different rate for hops in the y direc-
tion would not affect the results obtained in this paper.
We expect other generalizations of the model, where the
motion in the y direction is biased in a manner similar to
that in the x direction, to have the same generic behavior.
We return to this point in the discussion.

The model conserves the total number of particles of
each species. As will be demonstrated below, in two dimen-
sions the rates do not satisfy detailed balance for q 6= 1 ir-
respective of the number of particles of each species. Thus
the system is generically far from thermal equilibrium.

In the following we show, by numerical and analyt-
ical methods, that the slow logarithmic coarsening per-
sists in the two-dimensional model and also, we argue, in
higher dimensions. In two dimensions the system forms on
short time scales stripes of A, B and C particles which are
aligned along the y direction and are ordered along the
x direction in the form . . .AABBBCCAAABBCCC . . .
Thus the interfaces between three phases are lines whose
fluctuations must be considered. If the interfaces are
smooth the argument suggesting a logarithmic coarsening
in the one-dimensional model should also apply in the two-
dimensional model. That is, the average tunneling time of
a domain would be exponentially large in the average do-
main size. However, if the interfaces are rough such that
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they can come close to each other it might be that differ-
ent behavior would prevail. Thus, an important question
is: how rough is the interface? What we find is that the in-
terfaces are indeed smooth and the typical size of a stripe
grows as `(t) ∼ log(t).

The paper is organized as follows: it is first shown in
Section 2 that detailed balance cannot be satisfied in two
dimensions (in contrast to the one-dimensional case). In
Section 3 the coarsening of the model is studied numer-
ically and a simple interface model which captures the
essential physics of an interface between two phases is for-
mulated. The model is solved and shown to have a smooth
interface. In Section 4 we discuss the generality of the re-
sults both to other two-dimensional models and to higher
dimensions.

2 Lack of detailed balance in the model

To argue that the model presented above does not satisfy
detailed balance (except for q = 1) we first review the sit-
uation in the one-dimensional version of the model. In this
case it was shown [21] that when the number of particles
of each species is equal, that is when NA = NB = NC, de-
tailed balance is satisfied by the rates given in equation (1)
for arbitrary q. However, when the number of particles of
two species are not equal, say NA 6= NB, detailed balance
is not satisfied. To see this consider an arbitrary set of con-
figurations 1, 2..., k. Let W (i → j) be the transition rate
from configuration i to j. A necessary and sufficient con-
dition for the existence of detailed balance [14] is that for
any given set of k states the following equality is satisfied:

W (1→ 2)W (2→ 3) . . .W (k → 1) =
W (1→ k)W (k → k − 1) . . .W (2→ 1) . (3)

That is for any closed loop in configuration space the prod-
uct of rates going along one direction should be equal to
the product of rates going in the opposite direction.

We now apply this criterion to show that in d = 1 de-
tailed balance is not satisfied when the three densities are
unequal. Consider for simplicity the fully phase separated
state A . . .AB . . .BC . . .C. Take the rightmost A particle
and move it to the right until it has traversed both the
B and the C domains. The resulting configuration is a
fully phase separated state translated by one lattice unit
with respect to the starting configuration. Repeating this
process N times one returns to the starting configuration.
The product of the microscopic rates involved in this pro-
cess is qNNB . Carrying out a similar process but in the
reverse direction leads again to the starting configuration.
For this path the product of rates is qNNC . Thus according
to the criterion (3) detailed balance is not satisfied when
NB 6= NC, or when any two of the densities are not equal.
It is not difficult to show that when NA = NB = NC

detailed balance is satisfied [20,21].
Next, consider the two-dimensional model. In this case

whatever the number of particles of each species one can
always choose as a starting configuration a state where on

one of the rows the numbers of particles of each species
are not equal. Repeating the argument above, given for the
one-dimensional model, by considering particle exchanges
along this row we immediately see that due to the unequal
number of particles detailed balance does not hold.

Therefore, in contrast to the one-dimensional model,
whatever that number of particles of each species detailed
balance is never satisfied in two dimensions. It is straight-
forward to see that this argument also implies lack of de-
tailed balance in higher dimensional generalizations of the
model.

3 Coarsening in two dimensions

To study the dynamics of the model in two dimensions
we first show numerically that on a short time scale, the
system indeed evolves into a striped state composed of se-
quences of A, B and C aligned in the x direction. We then
study the slow coarsening process of these stripes and ar-
gue that the typical length scale increases logarithmically
with time.

3.1 Monte Carlo simulation

In order to study the short time behavior of the model and
demonstrate the flow into a striped state, Monte Carlo
simulations were performed for various values of Lx and
Ly. Starting from a random initial condition we studied
the case with equal densities of particles of each species.
A typical evolution of a system is presented in Figure 1
for a lattice with Lx = 300 and Ly = 80 with q = 0.15.
One can clearly see that on short time scales a striped
structure evolves in which stripes along the y direction
develop. As expected, the stripes are ordered in sequence
A, B, C along the x direction. On short time scales, when
the distance between neighboring domain walls is compa-
rable to their width, the stripes are strongly fluctuating.
At this stage the evolution of the structure through the
formation of topological defects is relatively fast. As time
progresses the asymptotic regime where the stripes are
smooth is reached. In this regime the dynamics is domi-
nated by the slow coarsening mechanism described in this
paper. Due to the slow time scales involved in the simula-
tions of the coarsening process our data does not allow us
to demonstrate quantitatively that the coarsening is log-
arithmic in time. However in the next section arguments
will be presented which support this growth law.

To analyze the data we have calculated the Fourier
transform of the density profile along the x direction for
each value of y:

ay(k) =
Lx−1∑
x=0

ãy(x) exp
(
−2πikx
Lx

)
. (4)

Here ãy(x) is equal to −1, 0 or 1 if the site (x, y) is occu-
pied by an A, B or C particle respectively. It thus corre-
sponds to the density difference of the A and C species.
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Fig. 1. On the left hand side one can see from top to bottom the evolution of a typical system for t0 = 0, t1 = 30, t2 = 66, t3 =
146, t4 = 920, t5 = 383000 Monte Carlo sweeps when q = 0.15. The different species of particles are represented as different
gray scales. On the right hand side the first 50 Fourier components of 〈|a(k)|〉 averaged over a hundred simulations for the same
times are presented and the same value of q. Similar results were obtained for different values of q.

We then calculated 〈|a(k)|〉, the average of |ay(k)| for all
values of y and over one hundred simulations. The results
are also presented in Figure 1. One can clearly see that
stripes of a characteristic size form. This is accompanied
by the emergence of a typical Fourier mode. As time pro-
gresses the k value of the typical Fourier mode decreases
as expected in a coarsening system.

It is of interest to examine the considerations presented
above for the existence of phase separation and slow coars-
ening in one dimension and to check whether the argu-
ment can be extended to two and higher dimensions. In
d dimensions the A, B, C domains are separated by fluc-
tuating (d − 1)-dimensional surfaces. For the argument
for slow coarsening to go through unmodified, we require
that these surfaces are smooth, that is of finite extent in
the growth direction. Otherwise, if they were rough, the
fluctuating distance between neighboring surfaces might
significantly affect the coarsening process. Therefore, we
have studied numerically the smoothness of the interfaces
in this model. To do this we consider the density of, say, A
particles near the AB domain wall. In Figure 2 such pro-
files obtained from Monte Carlo simulations of the three
species model are presented. The simulations were per-
formed for a given q at fixed value of Lx and varying Ly.
They were obtained by extracting the density profile of a
given species of particles near a domain wall and averag-
ing over 40 sets of data. One can see that the interface

is smooth since the density profile reaches a steady-state
form of finite extent in the x direction, as Ly is increased.

We have thus established numerically that the model
evolves towards a striped state and that the interfaces
between the phases are smooth. Next, an interface model
which captures the essential statistical properties of an in-
terface is studied and shown to predict a smooth interface
whose profile agrees very well with the numerics.

3.2 Interface model

To construct a simple model that well approximates the
behavior of the actual interfaces we begin by assuming
that the system is already in a striped configuration in
which interfaces are well separated. The density of, say,
the C particles near an AB interface is then negligently
small. This assumption will be shown to be consistent with
a smooth interface. Also any current of particles is expo-
nentially small in the domain size and can be neglected,
implying that the average velocity of the interface van-
ishes. We may thus study the interface properties by con-
sidering only A and B particles placed on a lattice with
closed (reflecting) boundary conditions in the direction of
the bias. As we will show such a model reduces to a model
of particles with excluded volume interaction placed in a
gravitational-like field in the x direction. For such systems
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Fig. 2. Profiles obtained from Monte Carlo simulations for
Lx = 300 and Ly = 40, 80, 160, 320 and q = 0.15. ∆ is the
distance from the center of the profile. The simulation results
for each Ly value is averaged over 40 profiles. Similar results
were obtained for different values of q.

the interface is smooth for any q 6= 1. This allows us to
derive an exact form for the density profile near an inter-
face which is valid for all dimensions. As will be argued
later this result applies to a wide variety of models con-
sidered previously and is not specific to the model studied
here. For example a similar profile is obtained in [23] for
a one-dimensional model.

We define the interface model on an lx× ly lattice with
periodic boundary conditions in the y direction and closed
boundary conditions in the x direction. That is, the model
is defined on a lattice with closed boundary condition in
the direction of the bias. We choose the densities such that
half the lattice sites of the lattice are occupied by A parti-
cles and the others are occupied by B particle. Therefore
the center (average x position of the interface) of the AB
interface is at lx/2. The dynamics of the model is iden-
tical to that of the three species model (see Eqs. (1, 2)).
However, all dynamics in which C particles participate are
irrelevant as there are no such particles present.

In this model an A can be thought of as a particle while
a B as a vacancy. Within this picture we have particles,
placed on a lattice, which are biased to move in a preferred
direction along x. Due to the closed boundary conditions,
which imply a zero current, it is easy to show that the
model satisfies detailed balance with respect to the steady
state weight (unnormalized probability)

W (C) = q
P
x,y xAx,y , (5)

where Ax,y = 1 (0) if, the site (x, y) in configuration C is
occupied (empty), and the sum runs over all lattice sites.
The steady state weight describes particles placed in a
linear potential with an excluded volume interaction. Note
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Fig. 3. A comparison of the profiles obtained from the in-
terface model and the toy model with no overhangs with the
profile obtained from Monte Carlo simulations for Lx = 300
and Ly = 320. ∆ = x− lx/2 is the distance from the center of
the profile.

that the above expression is valid whatever the rates for
exchange A and B in the y direction.

The solution of the density profile is obtained in
straightforward analogy to a Fermi gas. Since each lat-
tice site (x, y) can be occupied by only a single particle
it can be considered as a state of a Fermion with energy
εx,y = x. The mean number of particles at site (x, y),
nx,y, is given by the Fermi distribution with a tempera-
ture T = 1/| ln q| :

nx,y =
1

q−(x−lx/2) + 1
· (6)

As expected the distribution is independent of y. Here lx/2
plays the role of a chemical potential marking the center
of the profile. It is easy to check the condition that the
average density in indeed 0.5, namely

∑
x,y nx,y = lxly/2.

To see that this is satisfied for any value of q one uses the
relation

nlx/2+∆,y + nlx/2−∆,y = 1 (7)

where ∆ = x − lx/2. The density profile of the interface
is given by P (x) = nx,y. It has a finite width, 1/| ln q|, as
expected for a smooth interface.

A comparison of P (x) of the interface model and the
profile of the Monte Carlo simulations is given in Figure 3.
One can see that the interface model agrees very well with
the simulations.

We have thus established that the interfaces in the
model are smooth. This in turn implies that the argument
which was presented for the one-dimensional version of the
model is valid and predicts a logarithmic growth law for
the domain size.
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The interface studied above includes configurations
with bubbles and overhangs. In the study of interfaces
it is often assumed that bubbles and overhangs may be
neglected without affecting the macroscopic properties, so
that the interface may be described by a single valued
function. In the present context we can study the validity
of such an approximation since the profile both with (see
Eq. (6)) and without (see below) bubbles and overhangs
can be computed. Thus we consider only those configura-
tions in which the particles fill the left part of the system,
up to a ‘height’ hy which is the number of particles in
row y.

By performing the sum in equation (5) for each value
of y one obtains the following weight function:

W (C) = q
1
2

P
y h

2
y , (8)

where a term of the form
∑
y hy has been neglected, as it

is a constant equal to the total number of particles in the
system.

The properties of the interface can easily be obtained
by working in the grand canonical ensemble. We thus in-
troduce a chemical potential to respect the constraint that
the total height of the system

∑
y hy = lxly/2. The weight

of a configuration in this ensemble is thus

Wgc(C) = q
1
2

P
y(hy−lx/2)2

. (9)

The profile of the density along the x direction is then
given by

P (x) =

√
2| ln q|
π

∫ ∞
x

dh q
1
2 (h−lx/2)2

, (10)

where the continuum limit is assumed and the upper limit
of the integral was taken to be infinity. This gives

P (x) =
1
2

erfc
(

(x− lx/2)
√
| ln q|/2

)
, (11)

where erfc is the complementary error function. As ex-
pected the model with no overhangs also predicts a smooth
interface.

In Figure 3 the resulting profile is compared with the
one obtained by the numerical simulations. It is evident
that although the two profiles agree in general, the fit
is not as good as that with the Fermi function profile.
This is to be expected since, for example, in the regions
where the density of particles is low, the no overhang
assumption becomes a less accurate approximation. In
these regions excluded volume does not play an impor-
tant role. Due to the linear potential the profile decays as
P (x) ' q(x−lx/2) ∝ exp(−αx) with α a constant. How-
ever neglecting overhangs gives rise to a decay of the form
P (x) ∝ exp(−βx2) with β a constant.

4 Discussion

In this work we have studied a generalization to two di-
mensions of the ABC model for phase separation [20,21].

We have shown that the slow logarithmic coarsening of
the one-dimensional case persists. Further, we have shown
that the interface between the slowly coarsening domains
is smooth and can be described by a Fermi function with
a linear potential (see Eq. (6)).

We next turn to the question of the generality of
our results. First note that in the generalizations of the
ABC model to more than three species [21], and in the
models introduced by Lahiri et al. [22,23] and by Arndt
et al. [24,25] the mechanism which leads to coarsening in
the system is the same as in the ABC model. Namely,
the presence of stable domain boundaries is due to a bias
which drives particles of one species towards their own
domain with a constant velocity. In the model of Lahiri
et al. which comprises two coupled rings each containing
two species one has four different types of domain. The
dynamics is then governed by four stable interfaces sepa-
rating these domains, in analogy with the model consid-
ered in the present work. In the model of Arndt et al. there
are three types of domain separated by three interfaces.
(One of the stable domain walls corresponds to q > 0 in
equation (6) and the other two correspond to q = 0, i.e.
a zero temperature Fermi function.) Therefore, we expect
that the analysis of the present paper is applicable to ex-
tensions of these models to higher dimensions. This would
imply that coarsening processes in these models are loga-
rithmically slow.

The generalization of the model considered so far is
highly anisotropic in the sense that the dynamics along
the x and y direction are qualitatively different: while the
diffusion is biased in one direction it is symmetric on the
other. It is of interest to examine the case where the dif-
fusion along both axes (or all axes in higher dimensions)
has some bias. Let us consider such a generalization of the
ABC model to two dimensions where the exchanges along
the y direction have rates

BC ←−1
−→r CB

AB ←−1
−→r BA

CA ←−1
−→r AC,

(12)

while the exchanges along the x axis are as in equation (1).
On some coarse grained scale (where lattice effects may
be ignored) the dynamics is effectively uniaxial. The pre-
ferred direction in the x–y plane for exchange of parti-
cles is at an angle θ = arctan

(
1−q
1−r

)
with respect to the

y direction. The effective exchanges in the normal direc-
tion are symmetric. The effect of this would be for stripes
to form perpendicular to the preferred direction. At large
scales the model reduces to the model which we have stud-
ied in this paper. Similarly, generalizations of the ABC
model in higher dimensions are effectively uniaxial and do-
mains form with interfaces which are (d−1)-dimensional
hyperplanes orthogonal to the preferred direction.

To test this scenario we carried out Monte Carlo sim-
ulations of the model in two dimensions with r = q. In
Figure 4 the coarsening process is illustrated. One sees



Y. Kafri et al.: Slow coarsening in a class of driven systems 675

Fig. 4. Characteristic configurations during the evolution of a system with q = r = 0.15 for t0 = 0, t1 = 30, t2 = 66, t3 =
146, t4 = 4440, t5 = 383 000 Monte Carlo sweeps and Lx = Ly = 300. The different species of particles are represented as
different gray scales. Similar results were obtained for different values of q.

that after a transient time stripes oriented perpendicular
to the (1, 1) direction are formed confirming the above
picture.

Studies of phase separation and coarsening in driven
systems such as that of the present paper and the works
reviewed in the introduction, have suggested that the pro-
cesses involved are rather diverse. They range from rela-
tively fast power law to slow logarithmic coarsening. For
further examples of coarsening in related systems see [27–
29]. It would be very interesting to construct a more gen-
eral framework within which all these coarsening processes
could be understood and classified.

We thank Rashmi Desai for interesting discussions. MRE
thanks the Einstein Center for support and DM acknowledges
an EPSRC Visiting Fellowship. Support of the Israeli Science
Foundation is gratefully acknowledged.

References

1. For a review see A.J. Bray, Adv. Phys. 43, 357 (1994).
2. D.A. Huse, Phys. Rev. B 34, 7845 (1986).
3. I.M. Lifshitz, V.V. Slyozov, J. Chem. Solids 19, 35 (1961).
4. S.M. Allen, J.W. Cahn, Acta. Metall. 27, 1085 (1979).
5. T. Ohta, D. Jasnow, K. Kawasaki, Phys. Rev. Lett. 49,

1223 (1982).
6. R.J. Glauber, J. Math. Phys. 4, 294 (1963).
7. A.J. Bray, J. Phys. A 22, L67 (1990).
8. J.G. Amar, F. Family, Phys. Rev. A 41, 3258 (1990).
9. S.J. Cornell, K. Kaski, R.B. Stinchcombe, Phys. Rev. B

44, 12263 (1991).
10. S.N. Majumdar, D.A. Huse, B.D. Lubachevsky, Phys. Rev.

Lett. 73, 182 (1994).
11. T. Nagai, K. Kawasaki, Physica A 134, 483 (1986).
12. J.D. Shore, M. Holzer, J.P. Sethna, Phys. Rev. B 46, 11376

(1992).
13. For a review see B. Schmittmann, R.K.P. Zia, Statisti-

cal Mechanics of Driven Diffusive Systems, edited by C.
Domb, J.L. Lebowitz, Phase Transitions and Critical Phe-
nomena, Vol. 17 (Academic, London, 1995).



676 The European Physical Journal B

14. D. Mukamel, in Soft and Fragile Matter: Nonequilib-
rium Dynamics, Metastability and Flow, edited by M.E.
Cates, M.R. Evans (Institute of Physics Publishing, Bris-
tol, 2000), p.237; condmat/0003424.

15. M.R. Evans, D.P. Foster, C. Godrèche, D. Mukamel, Phys.
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